UTRGV collaborates in catching cosmic collision

The University of Texas Rio Grande Valley is basking in the glow of another major advance in the science of detecting ancient cosmic cataclysms.

On Monday, coinciding with a formal announcement in WashingtonD.C., UTRGV physics faculty, students and researchers gathered on the Brownsville campus for a press conference to discuss an Aug. 17 detection of gravitational waves created 130 million years ago by the collision of two rapidly spinning neutron stars. LIGO, the Laser Interferometer Gravitational Wave Observatory, made up of two separate facilities in Louisiana and Washington state, detected the waves, backed up by the Europe-based detector Virgo.

What’s different this time is that the wave detection was matched by visual confirmation of the primeval collision. Electromagnetic telescopes around the world and in space were able to detect the supernova burst of light given off by the colliding stars. Scientists are calling it the dawn of “multi-messenger astronomy.”

Gravitational waves, which Einstein theorized a century ago, were observed for the first time on Sept. 14, 2015. UTRGV’s Center for Gravitational Wave Astronomy, formed in 2003, is one of more than a 1,000 international members of the LIGO Scientific Collaboration. The first detection of gravitational waves — in that case caused by the collision of two black holes 1.3 billion years ago — was made possible by an algorithm developed by UTRGV physics faculty, working in collaboration with scientists at the University of Florida.

The CGWA also had a hand in the optical aspect of the Aug. 17 detection, via its Transient Optical Robotic Observatory of the South, a collaboration of scientists at UTRGV, Texas A&M and the National University of Cordoba (Argentina). The observatory, which is located in Argentina, serves as a “follow-up” instrument for LIGO and Virgo, searching for visual confirmation in deep space when gravitational waves are detected. TOROS was among the observatories that automatically sprung into action on Aug. 17.

READ ---  Billionaire Ally of Putin Socialized With Kushner, Ivanka Trump

Soma Mukherjee, chairman of the UTRGV Department of Physics and Astronomy, said the bond with LIGO has solidified over the years, with a growing number of the department’s scientists and students working on-site at LIGO facilities. As a member of the LIGO Scientific Collaboration, the department’s role is to help analyze the data that the facility generates, she said.

Before the initial detection, the question was whether gravitational waves, as predicted by Einstein, even existed. Now that they’ve been proven, the task is to find out what else might generate them besides black holes and neutron stars, Mukherjee said.

“We have found two sources,” she said. “We want more. And all of us, we work in different directions. We look for different types of sources.”

With seven or eight faculty members directly connected to gravitational wave research, UTRGV is in it for the long haul, Mukherjee said.

“We have an excellent team, one of the largest I believe, definitely in the state of Texas,” she said.

Juan Sanchez, UTRGV interim vice president of research, said the university’s partnership with LIGO puts it at the cutting edge of highly competitive physics research, pushes UTRGV farther toward the goal of becoming a research institution, and transforms the lives of students involved in the program.

“The advance of the last 12 months has been extraordinary,” he said.

[email protected]